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Formulas for Higher Derivatives 
of the Riemann Zeta Function 

By Tom M. Apostol 

Abstract. The functional equation for c(s) is used to obtain formulas for all derivatives 
t(k)(s). A closed form evaluation of t(k)(0) is given, and numerical values are computed to 
15D for k = 0(1)18. 

The functional equation for the Riemann zeta function states that 

(1) t'(1 - s) = 2(27T)-scos 7TS F(S)D(S) 

(see [3, Theorem 12.7]). If this is differentiated k times we obtain a formula which, as 
noted by Spira [11], can be put in the form 

k k 

(_j) k(k) ( - s) = 2(27T)Es a (ajkmCos 2 + bjkmsin 2 j)(s)D(m)(s), 
]=O = 

where the coefficients ajkm and bjkm are independent of s. This formula was used by 
Spira [11], [12] to determine zero-free regions for '(k)(S), and by Berndt [5], to 
determine the asymptotic number of zeros of t(k)(s) with 0 < t < T, where s = a + 
it. 

This paper gives a variant of this formula (Theorem 1) which enables us to 
determine the coefficients ajkm and bjkm explicitly (Theorem 2). Our version also 
leads to a closed form evaluation of (k)(0) (Theorem 3) which contains the 
well-known values s(O) = - 1 and s'(O) = - 1 log(27T) as well as a formula for s"(O) 
obtained by Ramanujan. The results for k > 3 appear to be new. Alternate formulas 
expressing t(k)(s) in terms of integrals are also given (Theorem 4). The values of 
t(k)(O) are computed to 16S for k = 0(1)18 (Table 2). 

Notation. Throughout this paper, z denotes the fixed complex number x + iy with 
x = -log 2 7T, y = -1n/2, and z* denotes the complex conjugate of z. 

THEOREM 1. For each integer k > 1 and all complex s we have 

(2) (-1)k (k)(1 _ s) = k (kz){eszk-m + esz*(Z*)k-m}{F(S)(S)}(m) 
m=O 
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Proof. First we put the functional equation in a form which is more convenient for 
repeated differentiation. Since (2T)-s = e-slg(2T) and 2 cos iTs/2 = e"is/2 + e-is/2 

we can rewrite (1) as follows: 

(3) (-s) = p(s; z) + p(s; z*), 

where 

p(s; z) = F(s)D(s)esz. 

Differentiation of (3) gives us 

(4) (_1)kt(k)(j _ s) - (k)(s; z) + p(k)(s; Z*). 

Using Leibniz's rule to calculate qp(k)(s; z) we find 
k 

(p(k)(s; z) = esz k ( )Zk-m' Fr(s)s)(m) 
m =O 

which, together with (4), proves (2). 

THEOREM 2. For each integer k > 1 and all complex s we have 

k-1 k(k) (1 -s ) 

(5) = 2(2iT)s E (k){Re(zk n)cos 2 

+Im(zk-m) sin 'Ts (]F(s)t(s)j(m) 

k m 
= 2(2T)-s ~ k)(m )Re(Zk-m) Cos 'T 

(6) m=O r=O 

+ Im(zk-m) sin 
' 

(r)(S)t(m-r)(S) 

Proof. To deduce (5) from (2) we note that 

es k-r + esz*(Z*)k m= 2(2T)-s{Re(zkm)cos7 + Im(zkm)sin I}T 

and to deduce (6) from (5) we use Leibniz's rule for the mth derivative { F(s)t(s)}(m). 

Examples. If z = x + iy we have 

Re(z2) = x2 _ y2 Im(z2) = 2xy, 

Re(z3) = x3 - 3xy2, Im(z3) = 3x2y - y3 

When x = -log 2T handy = -7T/2 we find, by taking k = 1, 2, 3 in (5), 

-'(l- s) = 2(27T)-s{xcos 2 +ysinT 2F(s)t(s) 

+2(2iT) sCos I{TS )r(s)}', 

s-S) = 2(2Ts{(X2 - y2) cos 2 + 2xy sin 2 F(s)'(s) 

+2(2iT)S{2xcos 2 + 2ysin 2 ({F(s)t(s)}' 

+ 2(2iT)-sCos ITS 
{ro(SMS) 
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"(1-s) = 2(2T)s {(x3 -3xy2)cos 2 + (3x 2y-y3 )sin 2 F(s) S) 

+2(27T)s 3(X2 - y2) cos + 6xysin '}{s F((S)(s)} 

+2(27T)5{3xcos 2 + 3ysin 2 ( F(s)t(s )" 

+2(2iT)-scos 'Ts 
f{ F(s)(s)}"'. 

It- shoud4be noteda that when - is anintee ones of the- fac-tors c-os- !/2 o-t sin isn!/Z 

vanishes, and Eqs. (5) and (6) simplify further. For example, if s = 2n + 1, where 
n = 1, 2, 3, . . ., we have cos rrs/2 = 0 and sin iTs/2 = (-1)' and (6) becomes 

(-1) k;( )(-2n ) 
- 2( 1)f? (A)(7) IM(Zk-m)F(r)(2n + 1)~(m-r)(2n + 1). 
(2sg)2+ m=O r=O m r 

Thus, '(k)(-2n) is a linear combination of '(2n + 1), ?'(2n + 1),... ,(k)(2n + 1). 
Similarly, when s = 2n the sine terms vanish and we get 

(_1)k~~(k)(j - 2n) = 2( E ( m () Re(zk-m)Fr(r)(2n ) (m-r)(2n), 
(27T)2 m=O r=O 

a linear combination of '(2n), t'(2n),... ,(k)(2n). 

If we put s = 1 in (2), we get (_l)kt(k)(O) on the left, but on the right we have an 
indeterminate form. By expanding each of the functions esz, esz* and { F(s) (s)}(m) 
in powers of s - 1 and letting s -- 1 we can obtain a closed form for (_l)k?(k)(O). A 
simpler method which gives the same result is based on the functional equation in 
(1). 

Since the left member of (1) is analytic at s = 1 it has a power series expansion 

M - s) = E ( 
n 

(s - i). 
n=O 

Now we expand the right member of (1) in powers of s - 1 and equate coefficients. 
Again we use Eq. (3) which served us so well in proving Theorem 1, and first find 
the expansion of p(s; z) in powers of s - 1. 

The product F(s)'(s) has a Laurent expansion of the form 

1 00 

(7) F(s)'(s) = s_ 1 + E an(s - 

and for the exponential factor esz we write 
00 

es = eze(s-1)z- E en(z)(s -1), 

n=O 

where 

e*n 
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Therefore the product cp(s; z) = F(s)t(s)esz has the expansion 

p(s; z) = ( 1 n= + ) a( )n E en()Z)(S - i)n) 

e _1 0( n+l(z) + E a-en-)(Z) n. 

Equating coefficients of (s - 1)n in the functional equation (3) we find, for n > 0, 

(8) (-1) n 
=en+l(z) + en+l(z*) + , ak(en-k(Z) + en-k(Z*)). n. k=O 

But ez = -i/(27) and ez * = i/(27T), so 

=iZ' n- i ( z*)n 1 Im( z ) 
en(Z) + en(Z*) 2hn! 7 n! 

Hence (8) becomes 

n '(n) (o) _1 Im(z n+1) 1 n~ Im(zn-k) 
_____ - +~~~~- E " ln!( 

)() 
T (n +) 

+ T k 
a (n -k)! 

Since Im(z?) = 0 and ao = 0 (as we will show later), the first and last terms of the 
sum can be deleted and we obtain the following theorem. 

THEOREM 3. If z = -log(2T) - i7/2 and n > 0, we have 

_n(n)(O) 1 Im( zn+1) 1 n-i Im( z n") (9) (-i) - + ak 
n T(n + 1)! k-i (n -k)!' 

where the coefficients ak are determined by (7). 

Examples. For 0 < n < 4, we find that (9) gives us 

0) = = __, 

NO(O) = - 2 Im(Z 2 =log(2X T) ) 

=) z3 +-a, Im(z) = 
1 

(3x2y y3) +-aly 37T 7T 37T 
7T 

1 7 
= -- log2(27T) + - a1, 2 2 

t(0) = IM_ Z4) 3 2, 
Im(z 3-k) 

1~ ~~~= 
= -- log3(27T) + 8 log(2T) - 3a1log(27T) + 3a2, 2 

- )+4 Im(z5 + 
4 3 

a (4-k) 
57T 7T 

F 
k1 (4 - k.)! 

1 ~~~~27T4 
= -- log4(27T) + 7T log2(27T) - _-6a_log2(27T) 2 4 160 - 6a11og2(1a) 

+l2a21og(2Th) - 12a3. 
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The formulas for t(O) and t'(O) are well-known [13, p. 20], and the formula for s"(O) 
was obtained by Ramanujan [6, p. ,25]. Numerical values are given below in Table 2. 

The coefficients ak which appear in (9) and are defined by (7) can be calculated. 
They are related to the coefficients in the Laurent expansion 

1 00 
(10) '(s + 1) =-+ E Ans' 

n-=O 

and those in the power series expansion 
00 

(11) F(s + 1) = E Cns E 
n=O 

The An are named after Stieltjes who showed [4, p. 155] that 

(-1) n!An = Nmo (N log k lon+1 N) 

In particular, AO is Euler's constant y. The first 20 Stieltjes constants have been 
calculated by Liang and Todd [9]. 

The numbers cn in (11) are, of course, r(n)(1)/n!. The derivatives F(n)(1) can be 
expressed in terms of Euler's constant and the values of '(s) at positive integers. 
This property of the c, is easily derived as follows. Start with the power series 
expansion for +i(x + 1) = F'(x + 1)/1(x + 1), [1, p. 259], 

00 

(12) n(x + 1) E+lX 
n=O 

where s1 = y and Sn = A;(n) for n > 2. Equating coefficients of xn in the identity 
F'(x + 1) = +(x + 1)F(x + 1), using (11) and (12), we obtain the recursion for- 
mula 

n 
(13) (n + 1)cn+l = E (-1)k lSk+lCn-k 

k=O 

with co = 1. (See Nielsen [10, p. 40].) 
Equation (13) also leads to a closed form evaluation of the derivatives F(n)(j) in 

terms of Euler's constant y and t(2), t(3),.... For example, 

r1(l) = -y, r"(1) = '(2) + y2, F ' (1) = -2'(3) - 3y'(2) - y3, 

F(4)(j) = 6'(4) + 3t2(2) + 8y'(3) + 6y2%(2) + -y4, 

F(5)(1) = -24'(5) - 20'(2)'(3) - 15y'2(2) - 30yt(4) 

-20y2 (3) - 10y3 3(2) - y5. 

Jeffery [8] has calculated the first 20 coefficients cn to 12 decimals. Bourguet [7] 
later calculated to 16 decimals the first 18 coefficients bn in the expansion 

00 

(x + 1)r(x + 1) = bnX n=O 
This relation implies bo = co = 1 and 

bn = Cn + cn-1 forn > 1, 
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TABLE 1 

n Stieltjes constants An c (1)/n! 

0 0.5772156649015329 1.000XXXXX090000 
1 0.7281584548367672 (-01) -0.5772156649015329 
2 -0.4845181596436160 (-02) 0.9890559953279726 
3 -0.3423057367172240 (-03) -0.9074790760808863 
4 0.9689041939447080 (-04) 0.9817280868344002 
5 -0.6611031810842190 (-05) -0.9819950689031452 
6 0.3316240908752770 (-06) 0.9931491146212762 
7 0.1046209458447920 (-06) -0.9960017604424315 
8 -0.8733218100273800 (-08) 0.9981056937831289 
9 0.9478277782762000 (-10) -0.9990252676219549 

10 0.5658421927608700 (-10) 0.9995156560727774 
11 -0.6768689863514000 (-11) -0.9997565975086013 
12 0.3492115936670000 (-12) 0.9998782713151333 
13 0.4410424742000000 (-14) -0.9999390642064443 
14 -0.2399786222000000 (-14) 0.9999695177634821 
15 0.2167731220000000 (-15) -0.9999847526993770 
16 -0.9544466000000000 (-17) 0.9999923744790732 
17 -0.7387700000000000 (-19) -0.9999961865894733 
18 0.4800900000000000 (-19) 0.9999980930811309 

-0.999999046469 

TABLE 2 

n an 
n 
(n)()O)n! 

O O.OOOOOOOOOOOOF 000 -0.5000000000000000 -0.5000000000000000 
1 0.7286939170039305 -0.9189385332046727 -0.9189385332046727 
2 -0.3834560903754670 -2.006356455908585 -1.003178227954292 
3 0.5323903060606865 -6.004711166862254 -1.000785194477042 
4 -0.4859027759456871 -23.99710318801370 -0.9998792995005709 
5 0.5018073423500181 -120.0002329075584 -1.000001940896320 
6 -0.4985920362510443 -720.0009368251297 -1.000001301146014 
7 0.4998425924690323 -5039.999150176233 -0.9999998313841731 
8 -0.4998028591976903 -40320.00023243172 -1.000000005764676 
9 0.4999251541081416 -362880.0003305895 -1.000000000911016 

10 -0.4999581497598492 -3628799.999456764 -0.9999999998502988 
11 0.4999798488252394 -39916800.00037562 -1.000000000009410 
12 -0.4999897969263561 -479001600.0000220 -1.000000000000046 
13 0.4999949183147713 -6227020799.999629 -0.9999999999999405 
14 -0.4999974562188593 -87178291200.00114 -1.000000000000013 
15 0.4999987285230217 -1307674368000.008 -1.000000000000006 
16 -0.4999993642057035 -20922789888000.15 -1.000000000000007 
17 0.4999996821100205 -355687428096002.6 -1.000000000000007 
18 -0.49999984106 -6402373705728048. -1.000000000000008 

so we have a simple way of calculating the cn in (11) recursively from the bn. The 
numerical values of the cn in Table 1 were obtained in this way from Bourguet's 
values. When rounded off to 12 decimals they agree with Jeffery's results except for 
c1o where Jeffery lists the 12th decimal place as 4 instead of 2. 

To relate an to the An and cn we write (7) as 
1 00 

r(s + 1)'(s + 1) = - + ? ansn, S n=O 
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then multiply (10) and (11), and equate coefficients to get 
n 

(14) an = Cn+1 + E Akcn-k. 
k=O 

This gives a closed form evaluation of the an in terms of the Stieltjes constants and 
values of the zeta function at positive integers. The first few values are 

ao = cl + Ao = 0, 

a, = !D(2) -y2 + A1, 

a2 = -3t(3) + -y3 - yAj + A2, 

a3 = *1(4) + 1g2(2) - .y2(2) - Y4 + 'D(2)A1 + 2A1 YA2 A3 

Numerical values for the an are given in Table 2. The calculations were based on (14) 
using the values for the An given by Liang and Todd [9] and the values of cn listed in 
Table 1. These values, in turn, were used together with (9) to calculate the derivatives 
'(n)(O) in Table 2. The numbers in Table 2 reveal that (-1)nan converges to - 1 and 

that '(n)(O)/n! converges to -1. These facts are easily proved by observing that we 
have the power series expansions 

-s) + - = E (D(")(?)+ 1)(1 -S 

and 
1 00 

F(S)S(s) + = E ((_1) an + )( -) 

each of which converges for s = 0; so when s = 0 the general term of each series 
tends to 0. 

Alternate formulas for t(k)(S) can be obtained from the representation [1, p. 807] 

1 1 n 
B'rs 2r - / n 0"Pn 

(15) t(s)= ++ E 2r(S +2r-2 )- s+2n+ ( s+2n+1(dx s -1 r=1 
r 2r -1 I 2n + 1 dx 

which is a consequence of Euler's summation formula. The B2r are Bernoulli 
numbers and the integral involves the periodic Bernoulli function 

(16) P2n+l(x)=_1)?n+1 2(2n + 1)! 0 sin2k7Tx (16) ~ P2 +l x)= ____ 
2n___ k__2n__1 

The representation for '(s) in (15) is valid in the half-plane a > -2n, n = 1, 2, 3,... 
and can be rewritten as follows: 

(17) s) -1 + +E -2rrQ2r l(S) - Q2n+1(S)I2n+1() 
r=l 

where Qm(s) is the binomial coefficient (a polynomial in s of degree m), 

(18) Qm(s) = s + m s(s + 1)(s + 2) (s + m- 

and 

Im(S) = j00PM(X) dx. 
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The k th derivative of this integral is simply 

(19) I(k) (s ) = ( )k P (X) (log X) dx, 

and the kth derivative of Qm(s) vanishes identically if k> m. 
By differentiating (17) repeatedly we obtain the following theorem. 

THEOREM 4. In the half-plane a > -2n, n = 1, 2, 3,.. ., we have 

(20) ~ (k)(s) - ( )k + 2r Q () 

(s -1)Ic + B2r-(k)( 

L ( )2n+ ()2n+1 s) 

For the special case n = 1 the sum on r vanishes identically if k >? 2, and the sum 
on v contains at most four terms since Q(")(s) vanishes identically for v > 3. Thus, 
for a > -2 we have 

(21) ?'(s) = 1 + s(s + 1)(s + 2) I(S) 
- 32+ 6s + 2 

(s-i)2 126 6 

and, for k >? 2, 

(22) t(k)(S) = (l) kk _ s(s + 1)(s + 2) (k) 

(s - 1)k+l 6 L3(s)J 

- k(3s2 + 6s + 2)I3(k-l)(s) - (2 ) (s + 1)I3(k-2)(s) 

-k(k - 1)(k - 2)I (k-3)(s). 

(If k = 2 the last term on the right of (22) is understood to be zero.) 
When s = 0 the formulas are even simpler. From (21) we get 

(23) ;'(o)=-1 + 1- 1I3(0), 12 3 

and for k >? 2, we have 

(24) (k) (o) = -k ! - k (k-1)(O) _ k(k ) 
1 

(k-2)() 

-k(k - 1)(k - 2)I(k-3)(0). 

These formulas, used in conjunction with Theorem 3, lead to successive closed 
form evaluations of the integrals I3(0), I3(0), I'(0),.... For example, using the 
formulas derived earlier for "'(O) and g"(O), we find 

I3(0) = j () dx = + 
3 

log(2,r) = 0.006815599614018225 

and 

I3 (0) _ jooP3(x)(-log x) dx 

= - - log(2,r) + - log2(2r) - + -a, = -0.000688715558150. 
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The same type of analysis can be applied to the Hurwitz zeta function '(s, a), the 
analytic continuation of the series 

??1 
t(s, a) = 

n=O (n + a) 
where a > 0 and a > 1. For a > -1, Euler's summation formula gives the represen- 
tation 

(25) D(s,a) =a(s + - )s(s + l) 92(x) dx 
2 s - 1 ~ (x?+a) s?2 

where qp2(x) = M -O[t] - 2) dt is periodic with period 1 and satisfies 

TP2(x) = 2X(x -1) if O < x < 1 

Differentiating (25) k times we obtain the formula 
/1 ak-1i o' 

()(k) (s, a) (logka)as -( + a + k!al-s E k-g+1 a) = ~ ~~~ s 
ii 

r=O r!.(s - )r? 

-s5 (s + i)f T2 (X) log (X + a) 

o (x?+a)s?2 d +k(2s + 1) | 2(X)log (x + a) 
o (x?+a)?2 d 

-k(k-1) l) P2(x)log (x + a) dx 
o (x?+a) s?2 dx 

For s = 0 this simplifies to 

(26) (k)(0 a) = (logk )( a) -k! + k!a lo r! 
r=k 

+( 1)kkf 00 2(x)logkl(x + a) d 
o (x?+a)2 d 

-(-1) kk(k - l) l) Tp2 (x)og 2(x + a) dx. 
0 (x?+a )2 

When a = 1 this can be transformed to (24) using integration by parts. 
When a = 1 and k = 1, Eq. (26) reduces to 

-i-f) 00 p2(x) J00-_ 2(x) dx. 
0(X?+1)2 ix2 

But, from [2, p. 616], we see that 

1?+ 2() dx= log(27)r 
1x 2 ' 

so we have another derivation of the formula 

(= -O log(277). 
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