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Formulas for Higher Derivatives
of the Riemann Zeta Function

By Tom M. Apostol

Abstract. The functional equation for {(s) is used to obtain formulas for all derivatives
¢ (s). A closed form evaluation of {(¥)(0) is given, and numerical values are computed to
15D for k = 0(1)18.

The functional equation for the Riemann zeta function states that
(1) ¢(1 - s) = 2(2m)* cos T T(s)¢(s)

(see [3, Theorem 12.7]). If this is differentiated k times we obtain a formula which, as
noted by Spira [11], can be put in the form

Kk k
-5 £ . S : m
(-1)*¢®(1 - 5) = 2(27) Zo Zo(ajkmcos——q; + bjkmsm——’; )l"(f)(s)g‘( )(s),
=0 m=

where the coefficients a ; ,, and b, are independent of 5. This formula was used by
Spira [11], [12] to determine zero-free regions for {¥)(s), and by Berndt [5], to
determine the asymptotic number of zeros of {¥)(s) with 0 < ¢ < T, where s = o +
it.

This paper gives a variant of this formula (Theorem 1) which enables us to
determine the coefficients a,,, and b, explicitly (Theorem 2). Our version also
leads to a closed form evaluation of ¢(0) (Theorem 3) which contains the
well-known values {(0) = — 4 and {’(0) = - 1 log(27) as well as a formula for {”(0)
obtained by Ramanujan. The results for k > 3 appear to be new. Alternate formulas
expressing § (®)(s) in terms of integrals are also given (Theorem 4). The values of
¢®(0) are computed to 16S for k = 0(1)18 (Table 2).

Notation. Throughout this paper, z denotes the fixed complex number x + iy with
x = —log2#,y = —w/2, and z* denotes the complex conjugate of z.

THEOREM 1. For each integer k > 1 and all complex s we have

k
2) (-1)®1-s) = go( k) {esszhom + e (2 * T HT(5)2(5)) ™.
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Proof. First we put the functional equation in a form which is more convenient for
repeated differentiation. Since (27)~° = e~*1°8%™ and 2 cos ms/2 = e""/% + e~ "/2
we can rewrite (1) as follows:

(3) §(1—5)=o(s;2) + 9(s; 2*),
where

9(s;2) = T(s)§(s)e.
Differentiation of (3) gives us
(4) (-1)5¢®O1 = 5) = B (s; 2) + (55 2%).
Using Leibniz’s rule to calculate ¢‘%)(s; z) we find

k
99(s;2) = e L (K )2+ m(T(s)5(5)}

m=0
which, together with (4), proves (2).
THEOREM 2. For each integer k > 1 and all complex s we have

(D00 -s)
(5) =2(027)" Z ( ){Re(zk '”)cos%{

m=0

+Im(zk‘m)sin Zzi}{r(s)g(s)}(m)

=2027)"° Re( k- SW_S

o -2 (e e
+1Im(z%~ m)51n_> TO(5)¢1(s).

Proof. To deduce (5) from (2) we note that

eszk M 4 7 (%) = 2(27)'3{Re(z"‘”’)cos7—72£ + Im(z%~™) sin%s—>,

and to deduce (6) from (5) we use Leibniz’s rule for the mth derivative { T'(s){(s)} ™.
Examples. If z = x + iy we have

Re(z2) = x2 — y2, Im(z?) = 2xy,
Re(z?) = x3 — 3xp?, Im(z3)=3x?%y —y>.
When x = -log2# and y = —«/2 we find, by taking k = 1,2, 3 in (5),
1 -s)= 2(27)'s{xcos 5 +ysinﬁs-}r(s)§(s)
+2(27f)_s°08—{1“( )$(s)Y,
¢'(1-s5)=2027)" {(x —yz)cos—— + 2xysin — }F(s){( 5)
+2(2w)"{2xcos 5+ 2ysin 7}{I‘(s)§(s)}’

+2(27) " cos ——{F(s){(s)}"
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(1 —s) = 2(2w)"{(x3 — 3xp?) cos T +(3x% — »*) sin %f}r(s)f(s)
+2(2ﬂ)_s{3(x2 — %) cos T + 6xysin ﬂ}{r(s)g(s)}'
+2027)° {3xcos—2—+ 3ysin 2 }{r( $)¢(s)}”
+2(27f)"°08—{1“( )$(s)} .

It should be noted that when s is an integer one of the factors cos 7s/2 or sin s /2
vanishes, and Egs. (5) and (6) simplify further. For example, if s = 2n + 1, where

n=123,..., wehave cos 7s/2 = 0 and sin #s/2 = (-1)" and (6) becomes
(-1)*¢®(-2n)
2" ¢

C TR (k) ey e s )
(2 ) g m=0r=0

Thus, ¢{¥)(-2n) is a linear combination of {2n + 1), {’'2n + 1),...,¢®Q2n + 1).
Similarly, when s = 2n the sine terms vanish and we get

(_l)kg-(k)(l _ 2( 1)2 Z Z ( )( r;l) Re(zk—m)F(r)(zn)g(m—r)(zn),
(27)™" m=0r=0
a linear combination of {(2n), {’'(2n),...,¢ ¥ (2n).

If we put s = 1 in (2), we get (-<1)*¢¥)(0) on the left, but on the right we have an
indeterminate form. By expanding each of the functions e*?, e**" and {T'(s)¢{(s)}™
in powers of s — 1 and letting s — 1 we can obtain a closed form for (-1)*¢©)(0). A
simpler method which gives the same result is based on the functional equation in
).

Since the left member of (1) is analytic at s = 1 it has a power series expansion

Z (-1)’ §""(0)( )"

n=0

(A -s)=

Now we expand the right member of (1) in powers of s — 1 and equate coefficients.
Again we use Eq. (3) which served us so well in proving Theorem 1, and first find
the expansion of ¢(s; z) in powers of s — 1.

The product I'(s){(s) has a Laurent expansion of the form

(7) T(s)¢(s) =——= T+ Z a,(s—1)",
and for the exponential factor e** we write

o0
e =e% V=Y ¢ (z)(s-1)",

n=0

where

e’z"
en(z) = n!
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Therefore the product o(s; z) = I'(s){(s)e** has the expansion

p(s: 2) = (—+za<s )(ie,.m(s—l)")

n=0 n=0

n
+ £ )+ £ aen a6 - "
n=0 k=0
Equating coefficients of (s — 1)” in the functional equation (3) we find, for n > 0,

® (DD () () + L alenil() + epa(e)).

k=0

Bute’ = —i/2w)and e?” = i/(27), so
iz" —i(z*)" 1 Im(z")

en(2) e (2) === =T

Hence (8) becomes
2$M0) _ 1 Im(z"“) L Im(z"7%)
( ) ] . Z ay _ .
n! 7 (n+ 1)' (n k)'
Since Im(z°) = 0 and a, = 0 (as we will show later), the first and last terms of the
sum can be deleted and we obtain the following theorem.

THEOREM 3. If z = —log(2w) — im/2 and n > 0, we have

et )(O) 1 Im(z"*?) "l Im(z77%)
) (-1)" =7 (n+ 1) —E P

where the coefficients a, are determined by (7).

Examples. For 0 < n < 4, we find that (9) gives us

{0) = -5,
£(0) = ~5- Im(z?) = -2 = 1log(zw),
£7(0) = 5= Im(2*) + 2a,Im(2) = 5= (3% = ) + Zayy

2 m?
—5 log*(27) + 23~ 9

2 Im(z%7%)

0 = -2 £ o0

—% log(27) + Eg_ log(27) — 3a,log(27) + 3a,,

£9(0) = - Im(z%) + = x kl(mT(%

= L ogt2m) + ™ tog?(2m) — o — 6a, log*(27)
2 4 160 1

2
+ %—al + 12a,log(27) — 12a,.
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The formulas for {(0) and {’(0) are well-known [13, p. 20], and the formula for {"(0)
was obtained by Ramanujan [6, p. 25]. Numerical values are given below in Table 2.

The coefficients a, which appear in (9) and are defined by (7) can be calculated.
They are related to the coefficients in the Laurent expansion

(10) () =24 T a0

n=0

and those in the power series expansion
0
(11) T(s+1)= Y c,s"
n=0

The A, are named after Stieltjes who showed [4, p. 155] that

N
n . log"k log"*'N

“1)"ni4. = -

(-1)"n'4, Nh_lgo k§=1 k P

In particular, 4, is Euler’s constant y. The first 20 Stieltjes constants have been
calculated by Liang and Todd [9].

The numbers c, in (11) are, of course, I'™(1)/n!. The derivatives I'(1) can be
expressed in terms of Euler’s constant and the values of {(s) at positive integers.
This property of the c, is easily derived as follows. Start with the power series
expansion for ¢ (x + 1) = I''(x + 1) /T'(x + 1), [1, p. 259],

(12) v+ = Y (1) s,
n=0

where s; = vy and s, = {(n) for n > 2. Equating coefficients of x" in the identity
I'(x + 1) =y(x + DI'(x + 1), using (11) and (12), we obtain the recursion for-
mula

n
(13) (n + 1)cn+l = E (_1)k+lsk+lcn—k
k=0

with ¢, = 1. (See Nielsen [10, p. 40].)
Equation (13) also leads to a closed form evaluation of the derivatives I'”(1) in
terms of Euler’s constant y and {(2), {(3),.... For example,

I'(1) = -y, T7(1)=¢(2)+¥? T7(1)=-2403) -3%() -7,
T@(1) = 6£(4) + 3¢2(2) + 8v¢(3) + 6vX(2) + v*,
I'O(1) = -24¢(5) - 20£(2)$(3) — 15v¢%(2) — 30v¢(4)
—20v%(3) — 10v%(2) - v°.

Jeffery [8] has calculated the first 20 coefficients ¢, to 12 decimals. Bourguet [7]
later calculated to 16 decimals the first 18 coefficients b, in the expansion

o0
(x+1)I(x+1)= Y bx"
n=0
This relation implies b, = ¢, = 1 and

b=c,+c,_, forn>1,
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TaBLE 1

Stieltjes constants 4,,

¢, = T™@)/n!

CHouAaUMhAWLORO|S

0.5772156649015329
0.7281584548367672 (~01)
~0.4845181596436160 (~02)
~0.3423057367172240 (~03)
0.9689041939447080 (~04)
~0.6611031810842190 (~05)
0.3316240908752770 (~06)
0.1046209458447920 (-06)
~0.8733218100273800 (~08)
0.9478277782762000 (~10)
0.5658421927608700 (~10)
~0.6768689863514000 (~11)
0.3492115936670000 (~12)
0.4410424742000000 (~14)
~0.2399786222000000 (~14)
0.2167731220000000 (-15)
-0.9544466000000000 (~17)
~0.7387700000000000 (~19)
0.4800900000000000 (~19)

1.000000000000000000

-0.5772156649015329

0.9890559953279726

-0.9074790760808863

0.9817280868344002

-0.9819950689031452

0.9931491146212762

-0.9960017604424315
- 0.9981056937831289
-0.9990252676219549

0.9995156560727774

-0.9997565975086013

0.9998782713151333

-0.9999390642064443

0.9999695177634821

—-0.9999847526993770

0.9999923744790732

-0.9999961865894733

0.9999980930811309

-0.999999046469

TABLE 2

a,

§0)

§™©)/n!

oA UMB WO ROl

0.0000000000000000
0.7286939170039305
-0.3834560903754670
0.5323903060606865
-0.4859027759456871
0.5018073423500181
—0.4985920362510443
0.4998425924690323
—0.4998028591976903
0.4999251541081416
-0.4999581497598492
0.4999798488252394
—-0.4999897969263561
0.4999949183147713
—-0.4999974562188593
0.4999987285230217
—-0.4999993642057035
0.4999996821100205
—0.49999984106

-0.5000000000000000
-0.9189385332046727
-2.006356455908585
-6.004711166862254
-23.99710318801370
-120.0002329075584
-720.0009368251297
-5039.999150176233
-40320.00023243172
-362880.0003305895
-3628799.999456764
-39916800.00037562
—479001600.0000220

—6227020799.999629

-87178291200.00114
-1307674368000.008
—-20922789888000.15
-355687428096002.6
—6402373705728048.

-0.5000000000000000
—-0.9189385332046727
-1.003178227954292
-1.000785194477042
-0.9998792995005709
-1.000001940896320
-1.000001301146014
-0.9999998313841731
-1.000000005764676
-1.000000000911016
—-0.9999999998502988
-1.000000000009410
-1.000000000000046
—0.9999999999999405
-1.000000000000013
-1.000000000000006
-1.000000000000007
-1.000000000000007
-1.000000000000008

so we have a simple way of calculating the ¢, in (11) recursively from the b,. The
numerical values of the ¢, in Table 1 were obtained in this way from Bourguet’s
values. When rounded off to 12 decimals they agree with Jeffery’s results except for
¢,0 Where Jeffery lists the 12th decimal place as 4 instead of 2.

To relate a,, to the 4, and ¢, we write (7) as

D(s + Di(s + 1) =2 + X a,sn

n=0
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then multiply (10) and (11), and equate coefficients to get
n
(14) a, = Cpi1 + Z Akcn—k'
k=0
This gives a closed form evaluation of the a, in terms of the Stieltjes constants and

values of the zeta function at positive integers. The first few values are

a,=c¢, +A,=0,

= 1(2) - v? + 4,,

ay=-303) + 37’ — v4, + 4,,

ay = K4 + Q) - 1%Q) - br* + BQ) A, + 1A, — vy + 4y,
Numerical values for the a, are given in Table 2. The calculations were based on (14)
using the values for the 4, given by Liang and Todd [9] and the values of ¢, listed in
Table 1. These values, in turn, were used together with (9) to calculate the derivatives
¢ (0) in Table 2. The numbers in Table 2 reveal that (-1)"a, converges to — 3 and

that {((0)/n! converges to —1. These facts are easily proved by observing that we
have the power series expansions

§(1—s)+%= i(f (0) +1)(1 s)"
and .
D(s)¢(s) + 55 = 3 p (( D"a,+3)a-s)",

each of which converges for s = 0; so when s = 0 the general term of each series
tends to 0.
Alternate formulas for {%)(s) can be obtained from the representation [1, p. 807]

(15) ¥s)=—2g+q+ Z B2'(S+2""2)_(s+2n)f1°°Pzn+1(x)dx

2r 2r—1 2n+1 xSt2n+l

which is a consequence of Euler’s summation formula. The B,, are Bernoulli
numbers and the integral involves the periodic Bernoulli function

241220 + 1)1 & sin2kwx
16) Popa() = () B2 3 sinde
(27) k=1

The representation for {(s) in (15) is valid in the half-plane 6 > -2n,n = 1,2,3,...,
and can be rewritten as follows:

N )=+ £ 20, ()= 0ars(5) L),

r=1

where Q,,(s) is the binomial coefficient (a polynomial in s of degree m),
(18) Qm(S)=(s+m‘1)=s(s+1)(s+2)“-(S+m—1),

m!
and

()= [
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The kth derivative of this integral is simply

(19) 10(s) = (-~ P00,

and the kth derivative of Q,,(s) vanishes identically if k£ > m.

By differentiating (17) repeatedly we obtain the following theorem.

THEOREM 4. In the half-plane 6 > -2n,n = 1,2,3,..., we have

(20) £0(s) - (—(—_1—)17"— £ S0,

- go( ) 0821 () I8k D(s).

For the special case n = 1 the sum on r vanishes identically if k¥ > 2, and the sum
on » contains at most four terms since Q4”)(s) vanishes identically for » > 3. Thus,
for ¢ > -2 we have

-1 1 s(s+1)(s+2) 3s2 +6s+2

@) §0) = e gy - LR D - 5(s).
and, for k > 2
@) s = - )

K s+ 65+ 10 (s) - KES D (5 4 1) em()

—k(k — 1)(k = 2)I{=3(s).

(If k£ = 2 the last term on the right of (22) is understood to be zero.)

When s = 0 the formulas are even simpler. From (21) we get

'(0) = 1.1

(23) ¢(0)=-1+ B 313(0),
and for k > 2, we have

Kk k-
- S10(0) -

—k(k = 1)(k = 2)I{*=¥(0).

These formulas, used in conjunction with Theorem 3, lead to successive closed
form evaluations of the integrals I,(0), I;(0), I5(0),.... For example, using the
formulas derived earlier for {’(0) and ¢”(0), we find

k(k —
2

(24) {0(0) = —k1 Y x-2(0)

P
1,(0) = fl w%ldx = —%1 + %log(%r) = 0.006815599614018225

and

13(0) LwP3(x)( logx)

9 2
3~ %log(%r) + 7 log?(2m) — 32 + S a; = ~0.000688715558150.
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The same type of analysis can be applied to the Hurwitz zeta function {(s, a), the
analytic continuation of the series

I
A

where a > 0 and ¢ > 1. For 0 > -1, Euler’s summation formula gives the represen-
tation

0
(25) §(s,a)=a‘s(%+s_al)—s(s+1)j; E;?i(_ax))Tde’
where @,(x) = [§(z — [t] — %) dt is periodic with period 1 and satisfies
P(x) =3ix(x-1) fO<x<1.
Differentiating (25) k times we obtain the formula

1 a k2l log"a
(—l)kf(")(s, a)= log"a)a‘s(— + ) + klgt=s ), ——=——
( 2 s-1 r=0r!(s — l)k_’+1

_s(s + 1)f0°° ¢2(x)log“(x + a)

(x + a)s+2
logk—1
+k(2s + 1)f°° P2(x)log (f2+ a) &
0 (x +a)’
log*=2(x +
—k(k - 1)]°° @,(x)log Efz a)dx.
0 (x + a)
For s = 0 this simplifies to
0 r
(26) £4(0,a) = (log" %)(% - a) —k'+kla ) ———logr,l/a
r=k *

S e

C )k (k - l)fow %(x)zzg:‘:g:c +a)

When a = 1 this can be transformed to (24) using integration by parts.
When a = 1 and k = 1, Eq. (26) reduces to

¢(0) = -1 - °°———"°2(x)2dx -1- fw??(Tx)—dx.
0 (x+1) 10X
But, from [2, p. 616], we see that
1+ jlw?%c(zi)dx = %log(27r),
so we have another derivation of the formula
§'(0) = - log(27).
Alfred P. Sloan Laboratory of Mathematics and Physics

California Institute of Technology
Pasadena, California 91125
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